Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Conservative Dentistry

Amorphous Calcium Phosphate (ACP)

Amorphous Calcium Phosphate (ACP) is a significant compound in dental materials and oral health, known for its role in the biological formation of hydroxyapatite, the primary mineral component of tooth enamel and bone. ACP has both preventive and restorative applications in dentistry, making it a valuable material for enhancing oral health.

1. Biological Role

A. Precursor to Hydroxyapatite

  • Formation: ACP serves as an antecedent in the biological formation of hydroxyapatite (HAP), which is essential for the mineralization of teeth and bones.
  • Conversion: At neutral to high pH levels, ACP remains in its original amorphous form. However, when exposed to low pH conditions (pH < 5-8), ACP converts into hydroxyapatite, helping to replace the HAP lost due to acidic demineralization.

2. Properties of ACP

A. pH-Dependent Behavior

  • Neutral/High pH: At neutral or high pH levels, ACP remains stable and does not dissolve.
  • Low pH: When the pH drops below 5-8, ACP begins to dissolve, releasing calcium (Ca²⁺) and phosphate (PO₄³⁻) ions. This process is crucial in areas where enamel demineralization has occurred due to acid exposure.

B. Smart Material Characteristics

ACP is often referred to as a "smart material" due to its unique properties:

  • Targeted Release: ACP releases calcium and phosphate ions specifically at low pH levels, which is when the tooth is at risk of demineralization.
  • Acid Neutralization: The released calcium and phosphate ions help neutralize acids in the oral environment, effectively buffering the pH and reducing the risk of further enamel erosion.
  • Reinforcement of Natural Defense: ACP reinforces the tooth’s natural defense system by providing essential minerals only when they are needed, thus promoting remineralization.
  • Longevity: ACP has a long lifespan in the oral cavity and does not wash out easily, making it effective for sustained protection.

3. Applications in Dentistry

A. Preventive Applications

  • Remineralization: ACP is used in various dental products, such as toothpaste and mouth rinses, to promote the remineralization of early carious lesions and enhance enamel strength.
  • Fluoride Combination: ACP can be combined with fluoride to enhance its effectiveness in preventing caries and promoting remineralization.

B. Restorative Applications

  • Dental Materials: ACP is incorporated into restorative materials, such as composites and sealants, to improve their mechanical properties and provide additional protection against caries.
  • Cavity Liners and Bases: ACP can be used in cavity liners and bases to promote healing and remineralization of the underlying dentin.

Onlay Preparation

Onlay preparations are a type of indirect restoration used to restore teeth that have significant loss of structure but still retain enough healthy tooth structure to support a restoration. Onlays are designed to cover one or more cusps of a tooth and are often used when a full crown is not necessary.

1. Definition of Onlay

A. Onlay

  • An onlay is a restoration that is fabricated using an indirect procedure, covering one or more cusps of a tooth. It is designed to restore the tooth's function and aesthetics while preserving as much healthy tooth structure as possible.

2. Indications for Onlay Preparation

  • Extensive Caries: When a tooth has significant decay that cannot be effectively treated with a filling but does not require a full crown.
  • Fractured Teeth: For teeth that have fractured cusps or significant structural loss.
  • Strengthening: To reinforce a tooth that has been weakened by previous restorations or caries.

3. Onlay Preparation Procedure

A. Initial Assessment

  • Clinical Examination: Assess the extent of caries or damage to determine if an onlay is appropriate.
  • Radiographic Evaluation: Use X-rays to evaluate the tooth structure and surrounding tissues.

B. Tooth Preparation

  1. Burs Used:

    • Commonly used burs include No. 169 L for initial cavity preparation and No. 271 for refining the preparation.
  2. Cavity Preparation:

    • Occlusal Entry: The initial occlusal entry should be approximately 1.5 mm deep.
    • Divergence of Walls: All cavity walls should diverge occlusally by 2-5 degrees:
      • 2 degrees: For short vertical walls.
      • 5 degrees: For long vertical walls.
  3. Proximal Box Preparation:

    • The proximal box margins should clear adjacent teeth by 0.2-0.5 mm, with 0.5 ± 0.2 mm being ideal.

C. Bevels and Flares

  1. Facial and Lingual Flares:

    • Primary and secondary flares should be created on the facial and lingual proximal walls to form the walls in two planes.
    • The secondary flare widens the proximal box, allowing for better access and cleaning.
  2. Gingival Bevels:

    • Should be 0.5-1 mm wide and blend with the secondary flare, resulting in a marginal metal angle of 30 degrees.
  3. Occlusal Bevels:

    • Present on the cavosurface margins of the cavity on the occlusal surface, approximately 1/4th the depth of the respective wall, resulting in a marginal metal angle of 40 degrees.

4. Dimensions for Onlay Preparation

A. Depth of Preparation

  • Occlusal Depth: Approximately 1.5 mm to ensure adequate thickness of the restorative material.
  • Proximal Box Depth: Should be sufficient to accommodate the onlay while maintaining the integrity of the tooth structure.

B. Marginal Angles

  • Facial and Lingual Margins: Should be prepared with a 30-degree angle for burnishability and strength.
  • Enamel Margins: Ideally, the enamel margins should be blunted to a 140-degree angle to enhance strength.

C. Cusp Reduction

  • Cusp Coverage: Cusp reduction is indicated when more than 1/2 of a cusp is involved, and mandatory when 2/3 or more is involved.
  • Uniform Metal Thickness: The reduction must provide for a uniform metal thickness of approximately 1.5 mm over the reduced cusps.
  • Facial Cusp Reduction: For maxillary premolars and first molars, the reduction of the facial cusp should be 0.75-1 mm for esthetic reasons.

D. Reverse Bevel

  • Definition: A bevel on the margins of the reduced cusp, extending beyond any occlusal contact with opposing teeth, resulting in a marginal metal angle of 30 degrees.

5. Considerations for Onlay Preparation

  • Retention and Resistance: The preparation should be designed to maximize retention and resistance form, which may include the use of proximal retentive grooves and collar features.
  • Aesthetic Considerations: The preparation should account for the esthetic requirements, especially in anterior teeth or visible areas.
  • Material Selection: The choice of material (e.g., gold, porcelain, composite) will influence the preparation design and dimensions.

Dental Amalgam and Direct Gold Restorations

In restorative dentistry, understanding the properties of materials and the techniques used for their application is essential for achieving optimal outcomes.  .

1. Mechanical Properties of Amalgam

Compressive and Tensile Strength

  • Compressive Strength: Amalgam exhibits high compressive strength, which is essential for withstanding the forces of mastication. The minimum compressive strength of amalgam should be at least 310 MPa.
  • Tensile Strength: Amalgam has relatively low tensile strength, typically ranging between 48-70 MPa. This characteristic makes it more susceptible to fracture under tensile forces, which is why proper cavity design and placement techniques are critical.

Implications for Use

  • Cavity Design: The design of the cavity preparation should minimize the risk of tensile forces acting on the restoration. This can be achieved through appropriate wall angles and retention features.
  • Restoration Longevity: Understanding the mechanical properties of amalgam helps clinicians predict the longevity and performance of the restoration under functional loads.

2. Direct Gold Restorations

Requirements for Direct Gold Restorations

  • Ideal Surgical Field: A clean and dry field is essential for the successful placement of direct gold restorations. This ensures that the gold adheres properly and that contamination is minimized.
  • Conservative Cavity Preparation: The cavity preparation must be methodical and conservative, preserving as much healthy tooth structure as possible while providing adequate retention for the gold.
  • Systematic Condensation: The condensation of gold must be performed carefully to build a solid block of gold within the tooth. This involves using appropriate instruments and techniques to ensure that the gold is well-adapted to the cavity walls.

Condensation Technique

  • Building a Solid Block: The goal of the condensation procedure is to create a dense, solid mass of gold that will withstand occlusal forces and provide a durable restoration.

3. Gingival Displacement Techniques

Materials for Displacement

To effectively displace the gingival tissue during restorative procedures, various materials can be used, including:

  1. Heavy Weight Rubber Dam: Provides excellent isolation and displacement of gingival tissue.
  2. Plain Cotton Thread: A simple and effective method for gingival displacement.
  3. Epinephrine-Saturated String:
    • 1:1000 Epinephrine: Used for 10 minutes; not recommended for cardiac patients due to potential systemic effects.
  4. Aluminum Chloride Solutions:
    • 5% Aluminum Chloride Solution: Used for gingival displacement.
    • 20% Tannic Acid: Another option for controlling bleeding and displacing tissue.
    • 4% Levo Epinephrine with 9% Potassium Aluminum: Used for 10 minutes.
  5. Zinc Chloride or Ferric Sulfate:
    • 8% Zinc Chloride: Used for 3 minutes.
    • Ferric Sub Sulfate: Also used for 3 minutes.

Clinical Considerations

  • Selection of Material: The choice of material for gingival displacement should be based on the clinical situation, patient health, and the specific requirements of the procedure.

4. Condensation Technique for Gold

Force Application

  • Angle of Condensation: The force of condensation should be applied at a 45-degree angle to the cavity walls and floor during malleting. This orientation allows for maximum adaptation of the gold against the walls, floors, line angles, and point angles of the cavity.
  • Direction of Force: The forces must be directed at 90 degrees to any previously condensed gold. This technique ensures that the gold is compacted effectively and that there are no voids or gaps in the restoration.

Importance of Technique

  • Adaptation and Density: Proper condensation technique is critical for achieving optimal adaptation and density of the gold restoration, which contributes to its longevity and performance.

Gallium Alloys as Amalgam Substitutes

  • Gallium Alloys: Gallium alloys, such as those made with silver-tin (Ag-Sn) particles in gallium-indium (Ga-In), represent a potential substitute for traditional dental amalgam.
  • Melting Point: Gallium has a melting point of 28°C, allowing it to remain in a liquid state at room temperature when combined with small amounts of other elements like indium.

Advantages

  • Mercury-Free: The substitution of Ga-In for mercury in amalgam addresses concerns related to mercury exposure, making it a safer alternative for both patients and dental professionals.

Dental Burs: Design, Function, and Performance

Dental burs are essential tools in operative dentistry, used for cutting, shaping, and finishing tooth structure and restorative materials. This guide will cover the key features of dental burs, including blade design, rake angle, clearance angle, run-out, and performance characteristics.

1. Blade Design and Flutes

A. Blade Configuration

  • Blades and Flutes: Blades on a bur are uniformly spaced, with depressed areas between them known as flutes. The design of the blades and flutes affects the cutting efficiency and smoothness of the bur's action.
  • Number of Blades:
    • The number of blades on a bur is always even.
    • Excavating Burs: Typically have 6-10 blades, designed for efficient material removal.
    • Finishing Burs: Have 12-40 blades, providing a smoother finish.

B. Cutting Efficiency

  • Smoother Cutting Action: A greater number of blades results in a smoother cutting action at low speeds.
  • Reduced Efficiency: As the number of blades increases, the space between subsequent blades decreases, leading to less surface area being cut and reduced efficiency.

2. Vibration Characteristics

A. Vibration and Patient Comfort

  • Vibration Frequency: Vibrations over 1,300 cycles per second are generally imperceptible to patients.
  • Effect of Blade Number: Fewer blades on a bur tend to produce greater vibrations, which can affect patient comfort.
  • RPM and Vibration: Higher RPMs produce less amplitude and greater frequency of vibration, contributing to a smoother experience for the patient.

3. Rake Angle

A. Definition

  • Rake Angle: The angle that the face of the blade makes with a radial line from the center of the bur to the blade.

B. Cutting Efficiency

  • Positive Rake Angle: Burs with a positive rake angle are generally desired for cutting efficiency.
  • Rake Angle Hierarchy: The cutting efficiency is ranked as follows:
    • Positive rake > Radial rake > Negative rake
  • Clogging: Burs with a positive rake angle may experience clogging due to debris accumulation.

4. Clearance Angle

A. Definition

  • Clearance Angle: This angle provides clearance between the working edge and the cutting edge of the bur, allowing for effective cutting without binding.

5. Run-Out

A. Definition

  • Run-Out: Refers to the eccentricity or maximum displacement of the bur head from its axis of rotation.
  • Acceptable Value: The average value of clinically acceptable run-out is about 0.023 mm. Excessive run-out can lead to uneven cutting and discomfort for the patient.

6. Load Characteristics

A. Load Applied by Dentist

  • Low Speed: The minimum and maximum load applied through the bur is typically between 100 – 1500 grams.
  • High Speed: For high-speed burs, the load is generally between 60 – 120 grams.

7. Diamond Stones

A. Abrasive Efficiency

  • Diamond Stones: These are the hardest and most efficient abrasive stones available for removing tooth enamel. They are particularly effective for cutting and finishing hard dental materials.

Glass ionomer cement is a tooth coloured material 
Material was based on reaction between silicate glass powder & polyacrylicacid.
They bond chemically to tooth structure & release fluoride for relatively long period

CLASSIFICATION 

Type I. For luting

Type II. For restoration 

Type II.1 Restorative esthetic 

Type II.2 Restorative reinforced

Type III. For liner & bases

Type IV. Fissure & sealent

Type V. As Orthodontic cement

Type VI. For core build up

Physical Properties

1. Low solubility
2. Coefficient of thermal expansion similar to dentin
3. Fluoride release and fluoride recharge
4. High compressive strengths
5. Bonds to tooth structure
6. Low flexural strength
7. Low shear strength
8. Dimensional change (slight expansion) (shrinks on setting, expands with water sorption)
9. Brittle
10.Lacks translucency
11.Rough surface texture

Indications for use of Type II glass ionomer cements 

1) non-stress bearing areas 

2) class III and V restorations in adults 

3) class I and II restorations in primary dentition 

4) temporary or “caries control” restorations 

5) crown margin repairs 

6) cement base under amalgam, resin, ceramics, direct and indirect gold 

7) core buildups when at least 3 walls of tooth are remaining (after crown preparation)

Contraindications 

1) high stress applications I. class IV and class II restorations II. cusp replacement III. core build-ups with less than 3 sound walls remaining

Composition

 

Factors affecting the rate or setting

1. Glass composition:Higher Alumina – Silica ratio, faster set and shorter working time.
2. Particle Size: finer the powder, faster the set.
3. Addition of Tartaric Acid:-Sharpens set without shortening the working time.
4. Relative proportions of the constituents: Greater the proportion of glass and lower the proportion of water, the faster the set.
5. Temperature

Setting Time

Type 1 - 4-5 min
type II - 7 min


PROPERTIES 

Adhesion :

- Glass ionomer cement bonds chemically to the tooth structure->reaction occur between carboxyl group of poly acid & calcium of hydroxyl apatite.
 
- Bonding with enamel is higher than that of dentin ,due to greater inorganic content. 

Esthetics :
-GIC is tooth coloured material & available in different shades.
Inferior to composites.
They lack translucency & rough surface texture.
Potential for discolouration & staining.

Biocompatibilty :

- Pulpal response to glass ionomer cement is favorable. 
- Pulpal response is mild due to 
- High buffering capacity of hydroxy apatite. 
- Large molecular weight of the polyacrylic acid ,which prevents entry into dentinal tubules. 

a) Pulp reaction – ZOE < Glass Ionomer < Zinc Phosphate 

b) Powder:liquid ratio influences acidity 

c) Solubility & Disintegration:-Initial solubility is high due to leaching of intermediate products.The complete setting reaction takes place in 24 hrs, cement should be protected from saliva during this period.

Anticariogenic properties :
- Fluoride is released from glass ionomer at the time of mixing & lies with in matrix.
Fluoride can be released out without affecting the physical properties of cement.

ADVANTAGE DISADVANTAGE

Beveled Conventional Preparation

Characteristics

  • External Walls: In a beveled conventional preparation, the external walls are perpendicular to the enamel surface.
  • Beveled Margin: The enamel margin is beveled, which helps to create a smooth transition between the restoration and the tooth structure.

Benefits

  • Improved Aesthetics: The beveling technique enhances the aesthetics of the restoration by minimizing the visibility of the margin.
  • Strength and Bonding: Beveling can improve the bonding surface area and reduce the risk of marginal leakage, which is critical for the longevity of the restoration.

Explore by Exams