NEET MDS Lessons
Conservative Dentistry
Radiographic Advancements in Caries Detection
Advancements in dental technology have significantly improved the detection and quantification of dental caries. This lecture will cover several key technologies used in caries detection, including Diagnodent, infrared and red fluorescence, DIFOTI, and QLF, as well as the film speeds used in radiographic imaging.
1. Diagnodent
-
Technology:
- Utilizes infrared laser fluorescence for the detection and quantification of dental caries, particularly effective for occlusal and smooth surface caries.
- Not as effective for detecting proximal caries.
-
Specifications:
- Operates using red light with a wavelength of 655 nm.
- Features a fiber optic cable with a handheld probe and a diode laser light source.
- The device transmits light to the handheld probe and fiber optic tip.
-
Measurement:
- Scores dental caries on a scale of 0-99.
- Fluorescence is attributed to the presence of porphyrin, a compound produced by bacteria in carious lesions.
-
Scoring Criteria:
- Score 1: <15 - No dental caries; up to half of enamel intact.
- Score 2: 15-19 - Demineralization extends into the inner half of enamel or upper third of dentin.
- Score 3: >19 - Extending into the inner portion of dentin.
2. Infrared and Red Fluorescence
- Also Known As: Midwest Caries I.D. detection handpiece.
- Technology:
- Utilizes two wavelengths:
- 880 nm - Infrared
- 660 nm - Red
- Utilizes two wavelengths:
- Application:
- Designed for use over all tooth surfaces.
- Particularly useful for detecting hidden occlusal caries.
3. DIFOTI (Digital Imaging Fiber Optic Transillumination)
- Description:
- An advancement of the Fiber Optic Transillumination (FOTI) technique.
- Application:
- Primarily used for the detection of proximal caries.
- Drawback:
- Difficulty in accurately determining the depth of the lesion.
4. QLF (Quantitative Laser Fluorescence)
- Overview:
- One of the most extensively investigated techniques for early detection of dental caries, introduced in 1978.
- Effectiveness:
- Good for detecting occlusal and smooth surface caries.
- Challenging for detecting interproximal caries.
Film Speed in Radiographic Imaging
- Film Types:
- Film D: Best film for detecting incipient caries.
- Film E: Most commonly used film in dentistry for caries detection.
- Film F: Most recommended film speed for general use.
- Film C: No longer available.
Proper Pin Placement in Amalgam Restorations
Principles of Pin Placement
- Strength Maintenance: Proper pin placement does not reduce the strength of amalgam restorations. The goal is to maintain the strength of the restoration regardless of the clinical problem, tooth size, or available space for pins.
- Single Unit Restoration: In modern amalgam preparations, it is essential to secure the restoration and the tooth as a single unit. This is particularly important when significant tooth structure has been lost.
Considerations for Cusp Replacement
- Cusp Replacement: If the mesiofacial wall is replaced, the mesiofacial cusp must also be replaced to ensure proper occlusal function and distribution of forces.
- Force Distribution: It is crucial to recognize that forces of occlusal loading must be distributed over a large area. If the distofacial cusp were replaced with a pin, there would be a tendency for the restoration to rotate around the mesial pins, potentially leading to displacement or failure of the restoration.
Continuous Retention Groove Preparation
Purpose and Technique
- Retention Groove: A continuous retention groove is prepared in the internal portion of the external walls of a cavity preparation to enhance the retention of restorative materials, particularly when maximum retention is anticipated.
- Bur Selection: A No. ¼ round bur is used for this procedure.
- Location and Depth:
- The groove is located 0.25 mm (half the diameter of the No. ¼ round bur) from the root surface.
- It is prepared to a depth of 0.25 mm, ensuring that it does not compromise the integrity of the tooth structure.
- Direction: The groove should be directed as the bisector of the angle formed by the junction of the axial wall and the external wall. This orientation maximizes the surface area for bonding and retention.
Clinical Implications
- Enhanced Retention: The continuous groove provides additional mechanical retention, which is particularly beneficial in cases where the cavity preparation is large or when the restorative material has a tendency to dislodge.
- Consideration of Tooth Structure: Care must be taken to avoid excessive removal of tooth structure, which could compromise the tooth's strength.
Resistance Form in Dental Restorations
Resistance form is a critical concept in operative dentistry that refers to the design features of a cavity preparation that enhance the ability of a restoration to withstand masticatory forces without failure. This lecture will cover the key elements that contribute to resistance form, the factors affecting it, and the implications for different types of restorative materials.
1. Elements of Resistance Form
A. Design Features
-
Flat Pulpal and Gingival Floors:
- Flat surfaces provide stability and help distribute occlusal forces evenly across the restoration, reducing the risk of displacement.
-
Box-Shaped Cavity:
- A box-shaped preparation enhances resistance by providing a larger surface area for bonding and mechanical retention.
-
Inclusion of Weakened Tooth Structure:
- Including weakened areas in the preparation helps to prevent fracture under masticatory forces by redistributing stress.
-
Rounded Internal Line Angles:
- Rounding internal line angles reduces stress concentration points, which can lead to failure of the restoration.
-
Adequate Thickness of Restorative Material:
- Sufficient thickness is necessary to ensure that the restoration can withstand occlusal forces without fracturing. The required thickness varies depending on the type of restorative material used.
-
Cusp Reduction for Capping:
- When indicated, reducing cusps helps to provide adequate support for the restoration and prevents fracture.
B. Deepening of Pulpal Floor
- Increased Bulk: Deepening the pulpal floor increases the bulk of the restoration, enhancing its resistance to occlusal forces.
2. Features of Resistance Form
A. Box-Shaped Preparation
- A box-shaped cavity preparation is essential for providing resistance against displacement and fracture.
B. Flat Pulpal and Gingival Floors
- These features help the tooth resist occlusal masticatory forces without displacement.
C. Adequate Thickness of Restorative Material
- The thickness of the restorative material should be sufficient to
prevent fracture of both the remaining tooth structure and the restoration.
For example:
- High Copper Amalgam: Minimum thickness of 1.5 mm.
- Cast Metal: Minimum thickness of 1.0 mm.
- Porcelain: Minimum thickness of 2.0 mm.
- Composite and Glass Ionomer: Typically require thicknesses greater than 2.5 mm due to their wear potential.
D. Restriction of External Wall Extensions
- Limiting the extensions of external walls helps maintain strong marginal ridge areas with adequate dentin support.
E. Rounding of Internal Line Angles
- This feature reduces stress concentration points, enhancing the overall resistance form.
F. Consideration for Cusp Capping
- Depending on the amount of remaining tooth structure, cusp capping may be necessary to provide adequate support for the restoration.
3. Factors Affecting Resistance Form
A. Amount of Occlusal Stresses
- The greater the occlusal forces, the more robust the resistance form must be to prevent failure.
B. Type of Restoration Used
- Different materials have varying requirements for thickness and design to ensure adequate resistance.
C. Amount of Remaining Tooth Structure
- The more remaining tooth structure, the better the support for the restoration, which can enhance resistance form.
4. Clinical Implications
A. Cavity Preparation
- Proper cavity preparation is essential for achieving optimal resistance form. Dentists should consider the design features and material requirements when preparing cavities.
B. Material Selection
- Understanding the properties of different restorative materials is crucial for ensuring that the restoration can withstand the forces it will encounter in the oral environment.
C. Monitoring and Maintenance
- Regular monitoring of restorations is important to identify any signs of failure or degradation, allowing for timely intervention.
Pin size
In general, increase in diameter of pin offers more retention but large
sized pins can result in more stresses in dentin. Pins are available in four
color coded sizes:
Name |
Pin diameter |
Color code |
·
Minuta |
0.38 mm |
Pink |
·
Minikin |
0.48mm |
Red |
·
Minim |
0.61 mm |
Silver |
·
Regular |
0.78 mm |
Gold
|
Selection of pin size depends upon the following factors:
·
Amount of dentin present
·
Amount of retention required
For most posterior restorations, Minikin size of pins is used because
they provide maximum retention without causing crazing in dentin.
A. Retention vs. Stress
- Retention: Generally, an increase in the diameter of the pin offers more retention for the restoration.
- Stress: However, larger pins can result in increased stresses in the dentin, which may lead to complications such as crazing or cracking of the tooth structure.
2. Factors Influencing Pin Size Selection
The selection of pin size depends on several factors:
A. Amount of Dentin Present
- Assessment: The amount of remaining dentin is a critical factor in determining the appropriate pin size. More dentin allows for the use of larger pins, while less dentin may necessitate smaller pins to avoid excessive stress.
B. Amount of Retention Required
- Retention Needs: The specific retention requirements of the restoration will also influence pin size selection. In cases where maximum retention is needed, larger pins may be considered, provided that sufficient dentin is available to accommodate them without causing damage.
3. Recommended Pin Size for Posterior Restorations
For most posterior restorations, the Minikin size pin (0.48 mm, color-coded red) is commonly used. This size provides a balance between adequate retention and minimizing the risk of causing crazing in the dentin.
Biologic Width and Drilling Speeds
In restorative dentistry, understanding the concepts of biologic width and the appropriate drilling speeds is essential for ensuring successful outcomes and maintaining periodontal health.
1. Biologic Width
Definition
- Biologic Width: The biologic width is the area of soft tissue that exists between the crest of the alveolar bone and the gingival margin. It is crucial for maintaining periodontal health and stability.
- Dimensions: The biologic width is ideally approximately
3 mm wide and consists of:
- 1 mm of Connective Tissue: This layer provides structural support and attachment to the tooth.
- 1 mm of Epithelial Attachment: This layer forms a seal around the tooth, preventing the ingress of bacteria and other irritants.
- 1 mm of Gingival Sulcus: This is the space between the tooth and the gingiva, which is typically filled with gingival crevicular fluid.
Importance
- Periodontal Health: The integrity of the biologic width is essential for the health of the periodontal attachment apparatus. If this zone is compromised, it can lead to periodontal inflammation and other complications.
Consequences of Violation
- Increased Risk of Inflammation: If a restorative procedure violates the biologic width (e.g., by placing a restoration too close to the bone), there is a higher likelihood of periodontal inflammation.
- Apical Migration of Attachment: Violation of the biologic width can cause the attachment apparatus to move apically, leading to loss of attachment and potential periodontal disease.
2. Recommended Drilling Speeds
Drilling Speeds
- Ultra Low Speed: The recommended speed for drilling channels is between 300-500 rpm.
- Low Speed: A speed of 1000 rpm is also considered low speed for certain procedures.
Heat Generation
- Minimal Heat Production: At these low speeds, very
little heat is generated during the drilling process. This is crucial for:
- Preventing Thermal Damage: Low heat generation reduces the risk of thermal damage to the tooth structure and surrounding tissues.
- Avoiding Pulpal Irritation: Excessive heat can lead to pulpal irritation or necrosis, which can compromise the health of the tooth.
Cooling Requirements
- No Cooling Required: Because of the minimal heat generated at these speeds, additional cooling with water or air is typically not required. This simplifies the procedure and reduces the complexity of the setup.
Caridex System
Caridex is a dental system designed for the treatment of root canals, utilizing the non-specific proteolytic effects of sodium hypochlorite (NaOCl) to aid in the cleaning and disinfection of the root canal system. Below is an overview of its components, mechanism of action, advantages, and drawbacks.
1. Components of Caridex
A. Caridex Solution I
- Composition:
- 0.1 M Butyric Acid
- 0.1 M Sodium Hypochlorite (NaOCl)
- 0.1 M Sodium Hydroxide (NaOH)
B. Caridex Solution II
- Composition:
- 1% Sodium Hypochlorite in a weak alkaline solution.
C. Delivery System
- Components:
- NaOCl Pump: Delivers the sodium hypochlorite solution.
- Heater: Maintains the temperature of the solution for optimal efficacy.
- Solution Reservoir: Holds the prepared solutions.
- Handpiece: Designed to hold the applicator tip for precise application.
2. Mechanism of Action
- Proteolytic Effect: The primary mechanism of action of Caridex is based on the non-specific proteolytic effect of sodium hypochlorite.
- Chlorination of Collagen: The N-monochloro-dl-2-aminobutyric acid (NMAB) component enhances the chlorination of degraded collagen in dentin.
- Conversion of Hydroxyproline: The hydroxyproline present in collagen is converted to pyrrole-2-carboxylic acid, which is part of the degradation process of dentin collagen.
3. pH and Application Time
- Resultant pH: The pH of the Caridex solution is approximately 12, which is alkaline and conducive to the disinfection process.
- Application Time: The recommended application time for Caridex is 20 minutes, allowing sufficient time for the solution to act on the root canal system.
4. Advantages
- Effective Disinfection: The use of sodium hypochlorite provides a strong antimicrobial effect, helping to eliminate bacteria and debris from the root canal.
- Collagen Degradation: The system's ability to degrade collagen can aid in the removal of organic material from the canal.
5. Drawbacks
- Low Efficiency: The overall effectiveness of the Caridex system may be limited compared to other modern endodontic cleaning solutions.
- Short Shelf Life: The components may have a limited shelf life, affecting their usability over time.
- Time and Volume: The system requires a significant volume of solution and a longer application time, which may not be practical in all clinical settings.