Talk to us?

Endodontics - NEETMDS- courses
NEET MDS Lessons
Endodontics

Bacterial portals to pulp: caries (most common source), exposed dentinal tubules (tubule permeability ↓ by dentinal fluid, live odontoblastic processes, tertiary and peritubular dentin)

1.        Vital pulp is very resistant to microbial invasion but necrotic pulps are rapidly colonized

2.        Rarely does periodontal disease → pulp necrosis

3.        Anachoresis: microbes carried in blood to area of inflammation where they establish infection

Caries → pulp disease: infecting bacteria are immobile, carried to pulp by binary fission, dentinal fluid movement

1.        Smooth surface and pit and fissure caries: S. mutans (important in early caries) and S. sobrinus

2.        Root caries: Actinomyces spp.

3.        Mostly anaerobes in deep caries. 

4.        Once pulp exposed by caries, many opportunists enter (e.g., yeast, viruses) → polymicrobial infection

Pulp reaction to bacteria: non-specific inflammation and specific immunologic reactions

1.        Initially inflammation is a chronic cellular response (lymphocytes, plasma cells, macrophages) → formation of peritubular dentin (↓ permeability of tubules) and often tertiary dentin (irregular, less tubular, barrier)

2.        Carious pulp exposure → acute inflammation (PMN infiltration → abscess formation).  Pulp may remain inflamed for a long time or become necrotic (depends on virulence, host response, circulation, drainage, etc.)

Endodontic infections: most commonly Prevotella nigrescens; also many Prevotella & Porphyromonas sp.

1.        Actinomyces and Propionibacterium species can persist in periradicular tissues in presence of chronic inflammation; they respond to RCT but need surgery or abx to resolve infection

2.        Streptococcus faecalis is commonly found in root canals requiring retreatment due to persistent inflammation

Root canal ecosystem: lack of circulation in pulp → compromised host defense

1.        Favors growth of anaerobes that metabolize peptides and amino acids rather than carbohydrates

2.        Bacteriocins: antibiotic-like proteins made by one species of bacteria that inhibit growth of another species

Virulence factors: fimbriae, capsules, enzymes (neutralize Ig and complement), polyamines (↑ # in infected canals)

1.        LPS: G(-), → periradicular pathosis; when released from cell wall = endotoxin (can diffuse across dentin)

2.        Extracellular vesicles: may → hemagglutination, hemolysis, bacterial adhesion, proteolysis

3.        Short-chain fatty acids: affect PMN chemotaxis, degranulation, etc.; butyric acid → IL-1 production (→ bone resorption and periradicular pathosis)

Pathosis and treatment:

1.        Acute apical periodontitis (AAP): pulpal inflammation extends to periradicular tissues; initial response

2.        Chronic apical periodontitis (CAP): can be asymptomatic (controversial whether bacteria can colonize)

3.        Acute apical abscess (AAA), phoenix abscesses (acute exacerbation of CAP), and suppurative apical periodontitis: all characterized by many PMNs, necrotic tissue, and bacteria

Treatment of endodontic infections: must remove reservoir of infection by thorough debridement

1.        Debridement: removal of substrates that support microorganisms; use sodium hypochlorite (NaOCl) to irrigate canals (dissolves some organic debris in areas that can’t be reached by instruments); creates smear layer

2.        Intracanal medication: recommend calcium hydroxide (greatest antimicrobial effect between appointments) inserted into pulp chamber then driven into canals (lentulo spiral, plugger, or counterclockwise rotation of files) and covered with sterile cotton pellet and temporary restoration (at least 3mm thick)

3.        Drainage: for severe infections to ↓ pressure (improve circulation), release bacteria and products; consider abx

4.        Culturing: rarely needed but if so, sterilize tissue with chlorhexidine and obtain submucosal sample via aspiration with a 16- to 20-gauge needle

In endodontics, dental trauma often results in the luxation of teeth, which is the displacement of a tooth from its normal position in the alveolus (the bone socket that holds the tooth). There are several types of luxation injuries, each with different endodontic implications. Here are the main types of dental luxation:

1. Concussion: A tooth is injured but not displaced from its socket. The periodontal ligament (PDL) is compressed and may experience hemorrhage. The tooth is usually not loose and does not require repositioning. However, it can be tender to percussion and may exhibit some mobility. The pulp may remain vital, but it can become inflamed or necrotic due to the trauma.

2. Subluxation: The tooth is partially displaced but remains in the socket. It shows increased mobility in all directions but can be repositioned with minimal resistance. The PDL is stretched and may be damaged, leading to pulpal and periodontal issues. Endodontic treatment is often not necessary unless symptoms of pulp damage arise.

3. Lateral luxation: The tooth is displaced in a horizontal direction and may be pushed towards the adjacent teeth. The PDL is stretched and possibly torn. The tooth may be pushed out of alignment or into an incorrect position in the arch. Prompt repositioning and splinting are crucial. The pulp can be injured, and the likelihood of endodontic treatment may increase.

4. Intrusion: The tooth is pushed into the alveolar bone, either partially or completely. This can cause significant damage to the PDL and the surrounding bone tissue. The tooth may appear shorter than its neighbors. The pulp is often traumatized and can die if not treated quickly. Endodontic treatment is usually required after repositioning and stabilization.

5. Extrusion: The tooth is partially displaced out of its socket. The PDL is stretched and sometimes torn. The tooth appears longer than its neighbors. The pulp is frequently exposed, which increases the risk of infection and necrosis. Repositioning and endodontic treatment are typically necessary.

6. Avulsion: The tooth is completely knocked out of its socket. The PDL is completely severed, and the tooth may have associated soft tissue injuries. Time is of the essence in these cases. If the tooth can be replanted within 30 minutes and properly managed, the chances of saving the pulp are higher. Endodontic treatment is usually needed, with the possibility of a root canal or revascularization.

7. Inverse luxation: This is a rare type of luxation where the tooth is displaced upwards into the alveolar bone. The tooth is pushed into the bone, which can cause severe damage to the PDL and surrounding tissues. Endodontic treatment is often necessary.

8. Dystopia: Although not a true luxation, it's worth mentioning that a tooth can be displaced during eruption. This can cause the tooth to emerge in an abnormal position. Endodontic treatment may be necessary if the tooth does not respond to orthodontic treatment or if the displacement causes pain or infection.

The endodontic management of luxated teeth varies depending on the severity of the injury and the condition of the pulp. Treatments can range from simple monitoring to root canal therapy, apicoectomy, or even tooth extraction in severe cases. The goal is always to preserve the tooth and prevent further complications.

A full mucoperiosteal flap is a critical component in periradicular surgery, allowing access to the underlying bone and root structures for effective treatment. This flap design includes the surface mucosa, submucosa, and periosteum, providing adequate visibility and access to the surgical site. Here’s a detailed overview of the flap design, its types, and considerations in periradicular surgery.

Key Components of Full Mucoperiosteal Flap

  1. Surface Mucosa:

    • The outermost layer that is reflected during the flap procedure.
  2. Submucosa:

    • The layer beneath the mucosa that contains connective tissue and blood vessels.
  3. Periosteum:

    • A dense layer of vascular connective tissue that covers the outer surface of bones, providing a source of blood supply during healing.

Flap Design Types

  1. Two-Sided (Triangular) Flap:

    • Description: Created with a horizontal intrasulcular incision and a vertical relieving incision.
    • Indications: Commonly used for anterior teeth.
    • Advantages: Provides good access while preserving the interdental papilla.
    • Drawbacks: May be challenging to re-approximate the tissue.
  2. Three-Sided (Rectangular) Flap:

    • Description: Involves a horizontal intrasulcular incision and two vertical relieving incisions.
    • Indications: Used for posterior teeth.
    • Advantages: Increases surgical access to the root surface.
    • Drawbacks: Difficult to re-approximate the tissue and may lead to scarring.
  3. Envelope Flap:

    • Description: A horizontal intrasulcular incision without vertical relieving incisions.
    • Indications: Provides access to the buccal aspect of the tooth.
    • Advantages: Minimally invasive and preserves more tissue.
    • Drawbacks: Limited access to the root surface.

Surgical Procedure Steps

  1. Local Anesthesia:

    • Administer local anesthesia to ensure patient comfort during the procedure.
  2. Incision:

    • Make a horizontal intrasulcular incision along the gingival margin, followed by vertical relieving incisions as needed.
  3. Flap Reflection:

    • Carefully reflect the flap to expose the underlying bone and root structures.
  4. Bone Removal and Curettage:

    • Remove any bone or granulation tissue as necessary to access the root surface.
  5. Apicectomy and Retrograde Filling:

    • Perform apicectomy if indicated and prepare the root end for retrograde filling.
  6. Flap Re-approximation:

    • Re-approximate the flap and secure it with sutures to promote healing.
  7. Postoperative Care:

    • Provide instructions for postoperative care, including the use of ice packs and gauze to control bleeding.

Considerations

  • Haemostasis:

    • Achieving and maintaining haemostasis is crucial for optimal visualization and healing. Techniques include the use of local anesthetics with vasoconstrictors and topical hemostatic agents.
  • Tissue Preservation:

    • Care should be taken to preserve as much tissue as possible to enhance healing and minimize scarring.
  • Postoperative Monitoring:

    • Monitor the surgical site for signs of infection or complications during the healing process.

Limited Mucoperiosteal Flap Design in Periradicular Surgery

Limited mucoperiosteal flaps are essential in periradicular surgery, particularly for accessing the root surfaces while minimizing trauma to the surrounding tissues. This flap design is characterized by specific incisions and techniques that aim to enhance surgical visibility and access while promoting better healing outcomes.

Limited Mucoperiosteal Flaps

  • Definition: Limited mucoperiosteal flaps involve incisions that do not include marginal or interdental tissues, focusing on preserving the integrity of the surrounding soft tissues.
  • Purpose: These flaps are designed to provide access to the root surfaces for procedures such as apicoectomy, root resection, or treatment of periapical lesions.

Types of Limited Mucoperiosteal Flaps

  1. Submarginal Horizontal Incision

    • Description: A horizontal incision made in the attached gingiva, avoiding the marginal gingiva.
    • Advantages: Preserves the marginal tissue, reducing the risk of gingival recession and scarring.
  2. Semilunar Flap

    • Description: A curved incision that begins in the alveolar mucosa, dips into the attached gingiva, and returns to the alveolar mucosa.
    • Advantages: Provides access while minimizing trauma to the marginal tissue; however, it has poor healing potential and may lead to scarring.
  3. Scalloped (Ochsenbein-Luebke) Flap

    • Description: Similar to the rectangular flap but with a scalloped horizontal incision in the attached gingiva.
    • Advantages: Follows the contour of the gingival margins, preserving aesthetics but is also prone to delayed healing and scarring.

Surgical Technique

  • Incision: The flap is initiated with a careful incision in the attached gingiva, ensuring that the marginal tissue remains intact.
  • Reflection: The flap is gently reflected to expose the underlying bone and root surfaces, allowing for the necessary surgical procedures.
  • Irrigation and Closure: After the procedure, the area should be well-irrigated to prevent infection, and the flap is re-approximated and sutured in place.

Clinical Considerations

  • Healing Potential: Limited mucoperiosteal flaps generally have better healing potential compared to full mucoperiosteal flaps, as they preserve more of the surrounding tissue.
  • Aesthetic Outcomes: These flaps are particularly beneficial in aesthetic zones, as they minimize the risk of visible scarring and gingival recession.
  • Postoperative Care: Proper postoperative care, including the use of ice packs and digital pressure on gauze, is essential to control bleeding and promote healing.

Drawbacks

  • Limited Access: While these flaps minimize trauma, they may provide limited access to the root surfaces, which can be a disadvantage in complex cases.
  • Healing Complications: Although they generally promote better healing, there is still a risk of complications such as delayed healing or scarring, particularly with semilunar and scalloped designs.

Conclusion

Limited mucoperiosteal flap designs are valuable in periradicular surgery, offering a balance between surgical access and preservation of surrounding tissues. Understanding the various types of flaps and their applications can significantly enhance the outcomes of endodontic surgical procedures. Proper technique and postoperative care are crucial for achieving optimal healing and aesthetic results.


Cracked tooth syndrome denotes an incomplete fracture of a tooth with a vital pulp. The fracture involves enamel and dentin, often involving the dental pulp.

Prevalence
Molars of older individuals most frequently present with cracked tooth syndrome. Most cases occur in teeth with class I restorations (39%) or in those that are unrestored (25%), but with an opposing plunger cusp occluding centrically against a marginal ridge. Mandibular molars are most commonly affected , followed by maxillary molars and maxillary premolars.

Symptoms
The patient usually complains of mild to excruciating pain at the initiation or release of biting pressure. Such teeth may be sensitive for years because of an incomplete fracture of enamel and dentin that produces only mild pain. Eventually, this pain becomes severe when the fracture involves the pulp chamber also. The pulp in these teeth may become necrotic.

Clinical features

Close examination of the crown of the tooth may disclose an enamel crack, which may be better visualized by using the following methods:

Fiber optic light: this is used to transilluminate a fracture line. Most cracks run mesiodistally and are rarely detected radiographically when they are incomplete.

Dye: Alternatively, staining the fractute with a dye, such as methylene blue, is a valuable aid to detect a fracture.

Tooth slooth: this is a small pyramid shaped plastic bite block, with a small concavity at the apex of the pyramid to accommodate the tooth cusp. This small indentation is placed over the cusp, and the patient is asked to bite down. Thus, the occlusal force is directed to one cusp at a time, exerting the desired pressure on the questionable cusp.

Common Canal Configurations:
There are many combinations of canals that are present in the roots  of human permanent dentition, most of these root canal systems in any one root can be categorized in six different types.  These six types are:

Type I : Single canal from pulp chamber to the apex.

Type II : Two separate canals leaving the chamber but merging short of the apex to form only one canal.

Type III : Two separate canals leaving the chamber and existing the root in separate apical foramina.

Type IV : One canal leaving the pulp chamber but dividing short of the apex into two separate canals with two separate apical foramina.

Type V : One canal that divides into two in the body of the root but returns to exist as one apical foramen.

Type VI : Two canals that merge in the body of the root but re-divide to exist into two apical foramina.

Root Canal Classes:

Another classification has been developed to describe the  completion of root canal formation and curvature.

Class I : Mature straight root canal.

Class II : Mature but complicated root canal having-severe curvature, S-shaped course, dilacerations or bayonet curve.

Class III : Immature root canal either tubular or blunder bass.

Direct pulp capping is a minimally invasive endodontic procedure used to preserve the vitality of the tooth's pulp when it is exposed due to caries or trauma. The goal is to induce a biological response that leads to the formation of dentin-bridge to seal the pulp and prevent further infection.

Indications:
- Cariously exposed pulp that is asymptomatic and has no evidence of irreversible pulpitis.
- Recent traumatic exposure of the pulp with no signs of necrosis or infection.
- Presence of a thin layer of residual dentin over the pulp.

Contraindications:
- Signs of irreversible pulpitis or pulpal necrosis.
- Presence of a deep carious lesion that may lead to pulpal exposure during restoration.
- Large pulp exposures or when the pulp is exposed for an extended period.
- Immunocompromised patients or those with poor oral hygiene.

Procedure:
1. Local anesthesia: Numb the tooth and surrounding tissue to ensure patient comfort.
2. Caries removal: Carefully remove caries and any infected dentin using a high-speed handpiece with water spray to prevent pulp exposure.
3. Hemostasis: Apply a mild hemostatic agent if necessary to control bleeding.
4. Pulp conditioning: Apply a calcium hydroxide paste or a bioactive material to the exposed pulp for a brief period.
5. Application of the capping material: Place a bioactive material, such as mineral trioxide aggregate (MTA), calcium silicate, or a glass ionomer cement, directly over the pulp.
6. Restoration: Seal the tooth with a temporary restoration material and place a final restoration (usually a composite resin) to protect the pulp from further trauma.
7. Follow-up: Monitor the tooth for signs of pain, swelling, or discoloration. If these symptoms occur, a root canal treatment may be necessary.

Advantages:
- Preservation of pulp vitality.
- Reduced need for root canal treatment.
- Faster healing and less post-operative sensitivity.
- Conservative approach, maintaining more natural tooth structure.

Disadvantages:
- Limited success in deep or prolonged exposures.
- Higher risk of failure in certain cases, such as extensive caries or pulp exposure.
- Requires careful technique to avoid further pulp damage.

Explore by Exams